- 1. (5pts.) Compute the derivative $\frac{dy}{dx}$ for $y = \sqrt{5} + \frac{x^5}{5} 5 \ln x$.
- 2. (5pts.) Compute the derivative p'(y) of the function $p(y) = \frac{2y+3}{7y+5}$.
- 3. (5pts.) Write down an equation of the tangent line to the graph of $y = 1 + 2e^x$ at the point where x = 0.
- 4. (5pts.) Determine the slope of the tangent line to the graph of the equation $5x^2 + 3y^2 + xy = 15$ at the point (-1,2).
- 5. (5pts.) Compute the derivative $\frac{dw}{dz}$ of the function $w = \sqrt{1 + ze^z}$.
- 6. (5pts.) Find the limit:

$$\lim_{\theta \to 0} \frac{3\sin 4\theta}{5\theta} =$$

(5pts.) Find the limit:

$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 - 1} =$$

(5pts.) Find the limit:

$$\lim_{x \to \infty} \frac{6x^2 + 100}{7x^2 - 100} =$$

(5pts.) For which constant k is the following function Q(x) continuous for all x? Justify your answer.

$$Q(x) = \begin{cases} x^2 + k & \text{if } x \le 0\\ \cos x & \text{if } 0 < x \end{cases}$$

- 10. (6pts.) Show that the derivative of $f(x) = \frac{1}{x}$ is $f'(x) = \frac{-1}{x^2}$ by using the definition of the derivative as the limit of a difference quotient.
- 11. (5pts.) If the volume $V = s^3$ of an expanding cube is increasing at the constant rate of 120 cubic inches per second, how fast is the length s of the sides increasing when the volume is 8 cubic inches?
- 12. (5pts.) Find where the graph of $y = x^3 6x^2$ is concave up and concave down, and find all inflection points.
- 13. (5pts.) Find and classify all the relative extrema of $F(x) = x^4 4x^2 + 2$.
- 14. (6pts.) Find the absolute maximum and minimum values of $f(x) = 4x^3 3x^2$ on the closed interval [-1, 1].
- 15. (6pts.) A particle moves along the x-axis with an acceleration given by a(t) = 6t + 2, where t is measured in seconds and s (position) is measured in meters. If the initial position is given by s(0) = 3 and the initial velocity is given by v(0) = 4 then find the position of the particle at t seconds.
- 16. (5pts.) A rectangular poster is to have an area of 100 square inches with a 1-inch margin on the right and left sides and a 2-inch margin at the top and bottom. Find the dimensions of the poster with the largest printed area.

17. (4pts.) Write (but DO NOT EVALUATE) a three term Riemann sum for the integral $\int_0^1 \sqrt{1+x^2} \, dx$

18. (5pts.) Find the area under the curve $y = 5 - 2x^2$ from x = 0 to x = 1

19. (4pts.) Evaluate the derivative F'(x) of the function F(x) defined by:

$$F(x) = \int_0^x \frac{1}{\sqrt{1+t^3}} dt$$

at x=2.

20. (4 pts.) Evaluate $\int x \sin(x^2) dx$